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Potentials of mean force between nonuniformly charged colloids or globular proteins are often estimated as
a pairwise sum of distinct orientation averages for charge-dipole and dipole-dipole interactions. In systems
with dipole-related interactions comparable to or exceeding the thermal energy, however, correlations between
charge-dipole and dipole-dipole terms can render the additivity assumption highly inaccurate. On the basis
of the third-order cumulant expansion of intercolloidal interactions, we derive an asymptotically exact relation
for the potential of mean force that includes the correlation between distinct contributions. Using a simple
discrete-orientation model, we obtain an approximate expression for the nonadditivity correction that reproduces
correct behavior in weakand strong coupling limits and is sufficiently accurate for practical calculations
over a wide range of interaction strengths including those characteristic of aqueous protein solutions.

I. Introduction

Prediction of solution properties and phase behavior of ionic
colloids depends on a reliable description of effective potentials
between dispersed particles. These potentials comprise several
distinct contributions, the most important being van der Waals
forces, Coulombic interactions, and forces from hydrophobic
and osmotic effects.1-3 In most theories, individual contributions
are considered as pairwise additive potentials of mean force
obtained upon integration over microscopic variables such as
the translational and orientational degrees of freedom of solvent
molecules and simple solutes surrounding the colloids. The
Derjaguin-Verwey-Landau-Overbeek (DLVO) theory of col-
loid stability, arguably the most widely accepted theory of
colloidal solutions, considers the intercolloidal potential between
approximately spherical macroparticles as a sum of dispersion
attraction and screened Coulomb repulsion described by the
linearized Poisson-Boltzmann approximation.4 Despite its many
simplifications, the DLVO theory has provided qualitative
explanations of a variety of observed phenomena such as the
roles of pH, ion adsorption, and screening by simple salts, all
controlling the stability of the dispersion.2,5,6 Applications of
DLVO theory have often been proposed for approximate
descriptions of Coulombic effects in solutions of globular
proteins. The usefulness of these applications is, however,
limited by the nonuniform distribution of ionized groups on
protein molecules, resulting in strong dipole, quadrupole, and
higher multipole interactions.7-22 These interactions render pair
potentials orientation-dependent and lead to notable deviations
from the predictions of the Poisson-Boltzmann equation for
spherically symmetric particles. Given a detailed charge distri-
bution on the macroions, the electrostatic problem can be solved

by numerical methods such as finite difference,23 multipole
expansion,8,15or boundary element10,17,21solution of the Poisson
and Poisson-Boltzmann equations for the interior of the
particles, and for the surrounding liquid phase, respectively. In
systems with moderate interaction strengths, the procedure can
be facilitated by adopting the superposition approximation20 that
presumes additivity of field perturbations due to distinct
macroparticles. A useful alternative avoiding approximations
of the theory is provided by essentially exact computer
simulations for models with realistic configuration of colloid
or protein charges.24 While detailed numerical calculations or
simulations provide the most accurate description of inter-
colloidal electrostatics, for practical application, it is also
desirable to examine approximate analytic methods that would
provide semiquantitative estimates of essential contributions in
the form of compact analytic expressions. Besides the general
insights they can provide, approximate analytic expressions for
the potential of mean force are of interest as input information
for various liquid-state theories such as integral equations25,26

and for calculations of phase equilibria in protein or colloidal
solutions.27,28 Most often, approximate analytic methods for
colloids with anisotropic charges consider only the leading
contributions, i.e., the charge-charge, charge-dipole, and
dipole-dipole interactions. Calculations of the potential of mean
force between dipolar particles requires orientation averaging
that can be performed analytically only under simplifying
assumptions. Typical simplifications include (a) the assumption
of pairwise additivity of orientation-averaged charge-dipole and
dipole-dipole terms and (b) truncated cumulant expansion of
the Boltzmann factor associated with the angle-dependent
interaction. Both simplifications restrict applicability of the
model to interactions small in comparison to thermal energy,
kBT.8 Because many ionized proteins carry charges,q, of the
order of 10 eo (eo is the elementary charge), and dipole moments,
µ, reaching several hundred Debye (D), the charge-dipole and
the dipole-dipole energies can be comparable tokBT rendering
the expansion method unreliable.8,13 Further, the orientation
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probabilities of these terms can become strongly correlated with
increasing strength of interactions. As a consequence, pairwise
additivity of distinct angle-averaged terms remains limited to
weak and moderate interaction strengths. In the present article,
we describe a generalization of the cumulant-expansion method
to the case of simultaneous charge-dipole and dipole-dipole
interactions, which takes into account correlations between the
two coupled contributions. In addition, we propose an ap-
proximate, discrete-orientation analytic model that avoids the
truncated expansion step and is applicable to systems with
arbitrarily strong interactions. The model provides a reasonably
accurate estimate of the nonadditivity correction when inter-
actions are too strong for direct application of the third-order
cumulant expansion. We test the approximate formulas by
comparison with rigorous results for weak coupling (high
temperature) and strong coupling (lowT) limits, and with exact
numerical results for the orientational part of the configuration
integral for a pair of dipolar primitive-model colloids. Electro-
static screening due to the simple ions, typically present in
biological systems and in many chemical processing environ-
ments, is described within the Debye-Hückel approximation
(characteristic of the DLVO theory) as adapted8 to polar particles
and dielectrically heterogeneous systems.

II. Analysis and Methods

The pair potential between nonuniformly charged colloidal
particles, such as proteins, includes interactions between net
charges, charge-dipole, dipole-dipole, and higher multipole
contributions. In the first approximation, we consider only
dominant terms arising from net charge and dipole interactions,
while we ignore quadrupolar and higher order effects. When
calculating thermodynamic properties of the solution, the
orientation dependence of dipole energies prevents a direct
application of standard liquid theories that are designed for fluids
with isotropic interparticle forces.25,26 The difficulty can be
overcome by integrating-out the orientational degrees of freedom
of interacting dipoles, a procedure leading to the potential of
mean force, which depends solely on interparticle separa-
tion.7,8,13,14 Within the primitive model, whereby the solvent
effects are considered only through the dielectric constant of
the medium, the relevant interactions entering the problem are

Here,â ) 1/kBT, ε is the relative permittivity of the medium,

εo the permittivity of vacuum,q andµ denote the charge and
dipole moment on interacting particlesi andj, separated by the
distancerij, θi is the angle between the directions of dipolei
and vectorr ij, φ ) (φi - φj), andθi describes the rotation of
dipole i aroundr ij (see Figure 1). Electrostatic screening due to
the presence of a simple electrolyte is absorbed in functions
Sk(rij,κ), approximately described8 by the following expressions:

Above, 1/κ is the Debye screening length,εp is the relative
permittivity of the colloid particle’s interior, andσij is the contact
distance for particlesi andj.8 While derived8 presuming Debye-
Hückel screening of individual charges, eqs 4-7 conform with
rigorous long-range behavior of correlation functions in ion-
dipole mixtures considered29,30 in subsequent analyses.

If we represent the Hamiltonian of the system,H, as a sum
of two terms,H ) H0 + V, with H0 comprising isotropic
interactions and perturbationV the dipole-related terms, the
angle-averaged potential of mean force,w(rij), can be written
as

with

Here, the angular brackets〈 〉H0 denote the average with respect
to the unperturbed Hamiltonian (devoid of angle-dependent
interactions). The particular case of an interacting charge and
dipole, eq 2, withνqµ depending on a single angle,θj, results in
an analytic solution14 for the above integral:

II.1. Truncated-Expansion Method. Colloidal forces often
represent a combination of charge-charge, charge-dipole, and
dipole-dipole interactions. In a general scenario, integration

Figure 1. Schematic representation of interacting particles.
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in eq 8 requires an expansion of the integrand using techniques
such as the cumulant expansion,31,32 or expansion in terms of
rotational invariants33 recently exemplified34 in the analysis of
pure dipolar interaction. A standard procedure applicable in
systems with weak dipole-dipole interactions (νµµ small
compared to 1/â), is based on the expansion of the Boltzmann
factor in eq 8 leading to

For a particular type of interaction (charge-dipole or dipole-
dipole), it is easy to show that odd-order cumulants vanish; the
series is usually truncated beyond the third-order term giving

Clearly, eq 11 captures the exact weak-coupling (high-temper-
ature) limit of the rigorous result given by eq 9. In the weak-
coupling regime, the potential of mean force behaves as a
quadratic function of coefficientsRk(r). At increased interaction
strengths where the two dipoles approach a nearly aligned
configuration, however, there is a crossover from quadratic to
linear dependence of the potential of mean force onRk(r).
Equation 11 fails to predict this saturation behavior. Applicabil-
ity of the truncated cumulant expansion is therefore limited to
small charges and dipoles, or strong electrostatic screening, and
eq 9 must be used for accurate charge-dipole interactions
between, for example, charged proteins. The dipole-dipole
term, on the other hand, is usually small in comparison with
1/â. Hence, the interprotein potential can be reasonably ap-
proximated by combining the rigorous results for pure charge-
charge and charge-dipole interactions with the approximate
estimate, eq 12, for the dipole-dipole term. For two identical
particles, this gives

The weakness of this method, however, lies in its inability to
capture adverse correlations between charge-dipole and dipole-
dipole terms present when each of the particles carries both a
net charge and a dipole.

For equally charged particles, opposing orientations are
favored by charge-dipole and dipole-dipole interactions.
Coupling between the two effects is illustrated in Figure 2, which
presents the orientational correlation function,〈cosθ1 cosθ2〉H,
for a pair of colloidal particles with equal dipolesµ1 ) µ2 )
400 D as a function of the charge, 0< q < 20 eo, located at the
centers of both particles, for three different center-to-center
separationsr12 ) 2, 3, or 4 nm. The variation of〈cos θ1 cos
θ2〉H, determined numerically as the weighted average

reveals a crossover from attractive dipole-dipole interactions
(positive〈cosθ1 cosθ2〉H) at weak chargesq to effective dipole-
dipole repulsion (negative〈cos θ1 cos θ2〉H) when strong
charge-dipole forces impose an unfavorable (antiparallel)
dipole-dipole orientation. The angle-averaged charge-dipole
terms,wqµ(r), and the dipole-dipole-term,wµµ(r), can therefore
be strongly nonadditive and warrant simultaneous orientation/
averaging of the complete potentialνij(rij,θi,θj,φ) ) νqµ(rij,θj)
+ νµq(rji,θi) + νµµ(rij,θi,θj,φ). For a pair of identical particles,
νij(rij,θi,θj,φ) is given by

CoefficientsRk(rij) are functions of interparticle separation given
by eqs 9 and 12. Considering only the second cumulant, and
for identical particles, the truncated expansion procedure applied
to the potential of eq 15 suggests the pairwise sum

however, the third cumulant corresponding to the potential of
eq 15

contains a nonvanishing term〈-R1
2R2 cos2 θi cos2 θj〉H0

associated with the coupling of charge-dipole and dipole-
dipole interactions. Performing the integrations, the total
potential of mean force is approximately described by

Figure 2. Orientation correlation functions,〈cos θ1 cos θ2〉H, for a
pair of dipolar macroions with net dipolesµ ) 400 D at contact
distancesσ ) 2 (solid), 3 (dashed), or 4 nm (dotted curve), as functions
of macroion chargeq. Electrolyte concentration is 0.1 mol dm-3.
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with the charge-dipole/dipole-dipole coupling term being

In view of eq 9, a somewhat better approximation is

When the charge-dipole and dipole-dipole interactions (second
and third terms on the rhs of eq 19 are of comparable strength,
the mixed charge-dipole/dipole-dipole contribution (the last
term on the rhs of eq 19) can be of similar magnitude (but with
opposite sign and shorter range) as the two distinct charge-
dipole and dipole-dipole terms. For oppositely charged dipolar
particles, on the other hand, the mixed term represents an equally
strong but attractive contribution. In typical colloidal or protein
solutions, with particle charges of the order 10 eo and dipoles
of several hundred D, the interactions are often too strong
(compared tokBT) to make the third-order expansion useful for
quantitative estimates. Equation 19 is therefore mainly applicable
at moderate interaction strength. In addition, by identifying the
lowest-order coupling term, eq 18 establishes the correct high-
temperature behavior needed for validating alternative ap-
proximations.

II.2. Discrete-Orientation Approximation. A rigorous
calculation of the potential of mean force requires solving the
configuration integral of eq 8, employingνij(rij,θi,θj,φ) given
in eq 15. In the absence of an exact analytic solution of this
integral, and by avoiding the expansion of the Boltzmann factor
[questionable forνij(rij,θi,θj,φ) close to (or exceeding) 1/â], we
proceed by presuming that the orientation space of the two
dipoles can be discretized, with each dipole sampling only six
principal directions:θi ) 0, π, φi ) 0, andθi ) π/2, φi ) 0,
π/2, π, or 3π/2, as illustrated in Figure 3 which shows an
orientation withθ1, θ2, andφ12 all at π/2. The above discreti-
zation reduces the integral of eq 8 to a sum of 36 terms. All
terms are of simple form because trigonometric functions for
allowed orientations assume only values 0, 1, or-1. For
symmetry reasons, the 36 orientations correspond to only eight
different energy levels; hence the partition function contains
eight independent terms. After some algebra, we arrive at the
following compact expression:

wherewd(rij) is the intercolloidal potential of mean force in the
discrete-orientation approximation. Equation 20 reduces to the

exact weak-coupling form, eq 18, when all angle-dependent
interactions are small compared to the thermal energy, 1/â.
Similarly, it reproduces a correct strong-coupling limit of fully
aligned dipoles when either the charge-dipole term or the
dipole-dipole term appreciably exceeds 1/â. For intermediate
interaction strengths, eq 20 constitutes an approximate interpola-
tion formula between the two extreme regimes. At intermediate
conditions (characteristic of aqueous protein solutions), however,
a more accurate approximation can be obtained by exploiting
the exact result for the orientation-averaged charge-dipole
contribution given by eq 9. We use eq 20 to estimate the
perturbation of w(r) from a hypothetical reference state
comprising uncoupled charge-dipole and dipole-dipole inter-
actions. At conditions typical of aqueous protein solutions, the
two distinct types of interaction are adequately described by eq
13. We therefore augment eq 13 by including the perturbation
term,wp(r), obtained as the difference between the approximate
potential of mean force from eq 20 and the sum of corresponding
charge-dipole and dipole-dipole terms:

In the case of extremely strong dipole-dipole interactions
(exceeding those observed in typical protein solutions), when
orientational saturation gives rise to the crossover from quadratic
to linear dependence of the dipole-dipole term onR2, an
analogous procedure can be used to avoid the truncated
expansion estimate for the dipole-dipole interaction. Presuming
that the reference state comprises only charge-charge and
charge-dipole interactions, we obtain

where

and

Equation 22 provides a fair description for strongly interacting
dipoles but is less accurate than eq 21 within the intermediate
range of interaction strengths corresponding to dipolar proteins
in dilute electrolyte solutions.

III. Results and Discussion

We assess the accuracies of the approximate expressions
discussed above by comparison with “exact” results obtained
from numerical integration of eq 8 for a broad range of macroion
charges and dipoles. Except for the simultaneous presence of
charge-dipole and dipole-dipole interactions, the numerical
solution of eq 8 is obtained following the procedure described

Figure 3. Discrete-orientation model of interacting dipoles (showing
orientationθ1 ) θ2 ) φ12 ) π/2).
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earlier.13 In Figure 4, we present the ratioswap(σ)/w(σ) between
the approximate potentials of mean force (excluding the charge-
charge termuqq) wap(σ), obtained by eq 13 or 21, and numerical
results forw(σ) from eq 8. We cover situations ranging from
vanishingly small charges and dipole momenta to typical protein
chargesq ∼ 10 eo and dipole momentsµ ) 400 D at aqueous-
solution conditions, with ambient temperature,T ) 298 K,ε )
εp ) 78.5, and at an ionic strength for a monovalent salt ofI )
0.1 mol dm-3 (close to the physiological salt concentration).
To include systems with relatively strong interactions, we
consider two colloids at a center-to-center separation equal to
their contact distance of (σ ) 3.0 nm. Situations corresponding
to other contact distances or screening strengths can be
considered through implicit renormalization of dimensionless
parameters,Ri(r) from eqs 9 and 12. We also note that, within
a given parameter range, eq 13 reproduces almost quantitatively
the pairwise sum of charge-dipole and dipole-dipole terms
determined by exact numerical integration. Its deviation from
unity therefore directly measures the relative error associated
with the additivity approximation. According to Figure 4, the
assumption of pairwise additivity of charge-dipole and dipole-
dipole terms) leads to small deviations from the exact result at
moderate charges and dipoles (up to∼100 D for givenσ and
κ) where the net interaction remains below 1/â. Further increases
in colloid charges and dipoles can result in serious errors due
to nonadditivity of the dipole forces. Atq ) 10 eo andµ ) 400
D, the relative error exceeds 75%. To illustrate the effect of
charge-dipole and dipole-dipole correlations in the weak-
coupling regime, Figure 5 compares total potentials of mean
force from various approximate expressions and the results of
the pairwise-additivity assumption. We also include the exact
results obtained by numerical integration of eq 8 and predictions
of eqs 13, 19, and 21. In the weak-interaction regime, the
predictions of the truncated-cumulant-expansion method, eq 19,
as well as the discrete-orientation perturbation model, eq 21,

agree quantitatively with exact numerical data. Both approxima-
tions correctly describe the deviations from pairwise additivity
of charge-dipole and dipole-dipole terms, which, in the given
case, amount to up to 20% of the total interaction. The inclusion
of the nonadditivity correction considered in eq 19 will,
however, not prevent the breakdown of the truncated expansion
approach at conditions when interactions become comparable
to 1/â.

The results of the perturbation method, eq 21, on the other
hand, remain close to the exact numerical results (the ratio
wap(σ)/w(σ) shown in Figure 4 remains relatively close to unity)
at all practically relevant conditions. Unlike the truncated-
cumulant-expansion given by eq 13 or 19, this approximation
remains applicable at strong-coupling regimes. Figure 6 further
illustrates the performance of the perturbation method at
relatively high dipole moments (µ ) 400 D, and charges,q )

Figure 4. Comparison at contact, between approximate intercolloidal
potentials of mean force (excluding the charge-charge interaction),
wap(σ), obtained by assuming pairwise additivity of angle-averaged
charge-dipole and dipole-dipole terms, eq 13 (upper surface), or by
simultaneous orientation-averaging according to the perturbation method
described by eq 21 (lower surface) as functions of macroion charges,
q, and dipole moments,µ. The colloid diameterσ ) 3 nm and
electrolyte concentration is 0.1 mol dm-3. All results are divided by
the exact numerical result of eq 8, such that deviations from unity
measure the inaccuracies of the two approximations.

Figure 5. Distance dependence of the intercolloidal potentials of mean
force for particles carrying chargesq ) 2 eo and dipolesµ ) 200 D in
0.1 mol dm-3 univalent electrolyte solution. The macroion diameterσ
) 3 nm: exact numerical results, eq 8 (thick solid), truncated expansion,
eq 19 (thin solid), perturbation approximation, eq 21 (thick dashed-
dotted), additivity approximation based on exact numerical results for
distinct charge-dipole and dipole-dipole terms (thick dashed), and
additivity approximation based on the cumulant expansion method, eq
13 (thin dashed curve).

Figure 6. Distance dependence of the intercolloidal potentials of mean
force for particles carrying chargesq ) 8 eo and dipolesµ ) 400 D in
0.1 mol dm-3 univalent electrolyte solution. The macroion diameterσ
) 3 nm: exact numerical results, eq 8 (thick solid), truncated cumulant
expansion, eq 19 (thin solid), perturbation approximation, eq 21 (thick
dashed-dotted), additivity approximation based on exact numerical
results for distinct charge-dipole and dipole-dipole terms (thick
dashed), and additivity approximation based on cumulant expansion
approach, eq 13 (thin dashed curve).
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8 eo). The distance dependence of the approximate potential of
mean force from eq 21 (dashed-dotted curve in Figure 6) is
similar to that obtained from the exact numerical solution of
eq 8 (thick solid curve in Figure 6). The truncated expansion
approach, eq 19 (thin solid line in Figure 6), overestimates the
nonadditivity correction. It is interesting to note the strong
deviations in the net potential of mean force from the pairwise
sum of the angle-averaged charge-dipole and dipole-dipole
terms (dashed cirves in Figure 6). This feature is captured by
eq 21. In view of its accuracy for relatively strong interactions,
eq 21 provides a useful approximation for analytic calculations
of the phase behavior in systems containing strong dipoles and
charges, e.g., solutions of ionized proteins.27,28

A pertinent example demonstrates the importance of a self-
consistent account of the various contributions to electrostatic
interactions in protein solutions and related colloidal systems.
In Figure 7, we present complete electrostatic potentials of mean
force (including the monopole interaction) from eq 21 for a pair
of identical model proteins with varying macroion chargeq and
fixed dipole momentµ ) 380 D. The proteins are separated by
the contact distanceσ ) 3 nm. The relative permittivity of the
macroionsεp is 4, and the salt concentration is varied from zero
to 0.5 mol dm-3 corresponding to a Debye screening parameter
of κ ∼ 0.23 A-1. As implied in eqs 4-7, the screening of
electrostatic interactions is strongest for the monopole-
monopole interaction and weakest for the dipole-dipole term.
As a consequence, different contributions to the total interaction
can dominate at different salt concentrations. Figure 7 shows
an example where direct charge-charge repulsion represents
the strongest term at high dilution, while attractive dipolar
interactions prevail above a threshold salt concentration. Upon
a further increase in the ionic strength, the attraction reaches
an extremum and then gradually decreases. The minimum in
the interprotein potential of mean force as a function of ionic
strength is consistent with the nonmonotonic salt effects
observed in measurements of cloud temperatures in lysozyme
solutions,35-37 diffusion coefficients of lysozyme and con-
canavalin,37,38activity of lactoglobulin,39 and association equi-
libria in insulin solutions.40 Clearly, other important phenomena,
such as van der Waals and hydrophobic interactions1,19 and
isotropic Coulombic effects41-43 observed in multivalent salts,
can contribute to interprotein attraction, shifting the observed35-40

extrema toward higher salt concentrations. The solution behavior
is determined by a delicate balance between Coulombic repul-

sion of protein charges and different attractive contributions;
each of these should be included in accurate calculations.

Comparisons of the results from various approximate expres-
sions with numerical solutions of eq 8, presented in Figures
4-6, provide an estimate of the numerical accuracy of the
approximate methods introduced in section II. In what follows,
we evaluate the consequences of some of the model simplifica-
tions introduced in the above methods. These include the
replacement of discrete charge distributions on the macroion
by an idealized point-charge/point-dipole representation, the
application of Debye-Hückel screening of charges and dipoles,
and the approximate account of dielectric inhomogeneities in
the solution. While we defer permittivity effects44 to future
studies, we assess the effect of the first two simplifications by
a brief comparison of analytic predictions with the results of
recent Monte Carlo simulations24 for a model mimicking the
charge distribution of a globular protein in a simple electrolyte.
Simulations considered24 the average force for an isolated pair
of macroions characterized by asmall contact distanceσ ) 2
nm, each macroion carrying 10 ionic groups with net charge 8
eo and dipoleµ ) 0, 380 or 490 D. As shown in Figure 8, the
discrete-orientation scheme leading to eq 21 provides a fair
estimate of the magnitude and the range of the overall
intercolloidal force despite the shortcomings of the theory.
Clearly, due to the point-charge representation of small ions
implied in the Debye-Hückel approximation, the theory cannot
capture the oscillations in the average force associated with the
layering of simple ions between adjacent macroions. A more
powerful liquid-state theory that considers simple ions as an
independent molecular species of finite size would be needed
for further improvement. To illustrate, in Figure 8 we also
include intercolloidal forces obtained from the hypernetted-chain
(HNC) approximation25,26,45,46using the primitive model25 of
an asymmetric electrolyte augmented with the angle-averaged
charge-dipole and dipole-dipole potentials between colloidal
particles from eq 21. That model accounts for the finite size of
simple ions,σi ) 0.4 nm. The calculated forces (dashed curves
in Figure 8) reveal the onset of counterion layering between
the two macroions. The effect is, however, weaker than that
found by simulation because the preaveraged charge-dipole

Figure 7. Potentials of mean force between identical colloidal particles
of diameterσ ) 3 nm, each carrying a dipoleµ ) 380 D, for several
values of colloid chargeq, as functions of the Debye-Hückel screening
parameterκ.

Figure 8. Comparison between simulated intercolloidal forces from
ref 24 and predictions of the discrete-orientation model for colloidal
particles of diameterσ ) 2 nm, chargeq ) 8 eo, and dipoleµ ) 0,
380 or 490 D in 0.125 mol dm-3 univalent electrolyte solution. Symbols
denote simulation results. Solid curves correspond to the analytical
estimates from eq 22. Dashed curves describe results from the HNC
approximation for a colloid/electrolyte mixture with direct colloid-
colloid potentials including the orientation-averaged charge-dipole and
dipole-dipole contribution from eq 21. The units of force arekBT/lB,
wherelB is the Bjerrum length (0.714 nm).
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and dipole-dipole potentials retain the screening functions from
the Debye-Hückel approximation. Integral-equation theories
for mixtures with strong angle-dependent interactions47-51

appear promising for more detailed descriptions of intercolloidal
forces. In addition to providing a more systematic approach34

to problems considered in the present work, such descriptions
should discriminate between different distributions of fixed
macroion charges, going beyond simple dipole-dipole and
charge-dipole interactions, while also regarding the screening
ions on an equal footing with the colloidal particles.
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